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1 Introduction

At 8:40p.m. on February 25, 1991, parts of an Iraqi Scud missile destroyed
the barracks housing members of the United States Army’s 14th Quartermaster
Detachment. This was the single, most devastating attack on U. S. forces during
the First Gulf War: 29 soldiers died and 99 were wounded. In the aftermath of
this attack, there has been great focus on developing air defense systems capable
of defending against ballistic missile attacks. The Critical Measurements and
Counter Measures Program (CMCM), run by the United States Army Space and
Missile Defense Command, conducts exercises to replicate projected ballistic
missile threats. These exercises help the U. S. military collect realistic data to
evaluate potential defensive measures. The high-fidelity hardware and realistic
scenarios created for the exercises provide extensive optical, radar, and telemetry
data (U. S. Army SMDC 2004).

CMCM is organized into campaigns. Each campaign chooses a new ballistic
missile threat and develops two to four high fidelity launch vehicles that emulate
the threat as closely as possible given intelligence information. While there is
some reuse across campaigns, each set of launch vehicles is essentially a complex,
one-of-a-kind, one-time-use system built for a specific data collection purpose.
Typically, due to cost and schedule constraints, there are no “risk reduction”
flights performed, so there is no full-system checkout before the actual flights.
The systems are designed and built in a distributed fashion, with scientists and
engineers from different companies designing, building, and integrating various
parts of the vehicle. These campaigns are expensive (millions of dollars) and
politically high profile.

The issue that we address in this paper is how to determine a preflight
probability of mission success and how to assess areas of risk to the flight. Since
there are no full-system tests, this involves careful system modeling and the
integration of as much component, historical, and engineering data as possible.
The applied problem described here is large and complex. The system itself is
well-understood in some dimensions by the groups working on the project, but
not in terms of its overall reliability and performance. Knowledge of the total
system is distributed across two primary research and development contractors
and several subcontractors, all of which are located in different parts of the
country. Each research group understands its area of responsbility at a granular
level, and there is working knowledge of how to build a missile that will fly,
but the project teams do not have methodology or tools to assess or predict
full-system performance or reliability.

There is heterogeneous data that explains different aspects of component
and subcomponent performance, but very little sense of how that data relates
or how to sensibly combine the data and propagate reliability estimates and
their uncertainties to understand overall system reliability. There are hundreds
of components and subcomponents that all perform differently. This is not a
consulting problem where the client comes in with a single set of data, and the
statistician immediately intuits the correct model and directly applies statis-
tical tools. Our approach to grappling with this problem was to first build a
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qualitative model of the problem space (its parts and relationships) and then to
migrate that qualitative model to a graphical statistical model. We used ethno-
graphic interviewing and observation techniques (Meyer and Booker 2001) to
elicit the problem structure, which was then represented in conceptual graphs
(Sowa 2000). The ethnographic methods used to represent the model structure
are described in detail in a separate article (McNamara and Leishman 2004).
The framework that we use to quantitatively model the system and integrate
the data is Bayesian networks (BN).

There is limited literature on the use of BNs in failure modes and effects
analysis (Lee 2001) and reliability (summarized in Sigurdsson et al. (2001)),
although there is quite a broad literature on using BNs for probabilistic model-
ing (e.g., Spiegelhalter (1998); Neil et al. (2000); Laskey and Mahoney (2000);
Jensen (2001)). The reliability literature focuses primarily on discrete random
variables; we extend this to the case where there are uncertainties in the condi-
tional probability table. We apply the ideas from the general BN literature to
the development of the system model and inference.

This paper will describe our approach to the assessment of Campaign 4 of
the CMCM program (CMP-4). Section 2 details the development of the sys-
tem representation using both qualitative and quantitative methods. Section 3
discusses the statistical model for the system and the information and data avail-
able to populate the model. Section 4 shows how the information was combined
to make estimates. Section 5 contains conclusions and discussion.

2 Representing the System

2.1 Defining Mission Success

The questions of interest for CMP-4 included assessing the probability of mission
success and identifying areas of technical risk. For large collaborative technical
efforts to develop specialized technology, it is often difficult for those involved
to have an integrated view of the project space, its goals, and the metrics for
success. Likewise, at the beginning of the CMP-4 project, there was no clear
definition of overall mission success. (The joke was “A mission is successful if I
can write a press release that saves my job.”) There were clearly some things
that would make a mission unsuccessful—for example, if the vehicle explodes
on the launch pad. However, there was no clear enumeration of intermediate
negative events that would render a mission more or less successful, nor a clear
understanding of how certain events in combination would lead to undesirable
outcomes.

To develop a definition of mission success, we worked with experts at CMCM
to understand what events occur to make up the mission. Over several months
we also worked with the experts at the two main contractors on the project to
understand what functions the missile had to perform for the mission events
to transpire successfully. Furthermore, we worked with them to identify the
parts of the system that had to correctly perform those functions. This events-
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functions-parts approach to modeling the technical system allowed us to char-
acterize both the overall probability of mission success and to localize the areas
of risk across the system. Unacceptably high risk or uncertainty could be traced
to the event, function, part, or interaction of parts that was the root cause.

For CMP-4, the events that make up the mission fall into three categories:
the threat-representative flight, the data collection, and the auxiliary exper-
iments. Failure in any of these categories cause a mission to be unsuccess-
ful. Figure 1 summarizes the events that make up the mission. The threat-
representative events are on the left side of the diagram. Notice that there are
nine different data collection streams; some start immediately after ignition,
and others start after later events.

Once the mission was defined in terms of the events that make it up, then
the question of mission success could be revisited. One issue that had to be
addressed was whether mission success was a discrete or continuous quantity. It
was decided that mission success could be defined as catastrophic failure (RED),
degraded (YELLOW), or nominal (GREEN). This language was natural for the
CMCM staff and contractors working on the program, as it is commonly used
in the Department of Defense to describe categories of outcomes in technical
and military missions. Each of the events in Figure 1 was also defined to have
RED, YELLOW, or GREEN states. Table 1 summarizes what event states can
cause catastrophic mission failure (RED); Table 2 summarizes the event states
that cause a degraded mission (YELLOW).

For the events in Tables 1 and 2, each is contingent upon the previous events
(from Figure 1) not failing catastrophically. For example, ignition fails catas-
trophically when the vehicle blows up on the launch pad. If the vehicle blows
up before launch, all other events do not occur. The conditional specification
of relationships in the mission suggests that a BN might be the appropriate
representation for the probability of mission success.

2.2 Constructing Bayesian Networks

Formally, a BN is a pair N = 〈(V, E), P 〉, where (V, E) are the nodes and edges
of a directed acyclic graph and P is a probability distribution on V . Each
node contains a random variable, and the directed edges between them define
conditional dependences/independences among the random variables. Figure 2
summarizes the three probabilistic relationships that can be specified in a BN.
More informally, a BN is useful when the structure of the model and information
is “local,” meaning it can be specified as depending on a “few” other variables
and affecting a “few” others.

The conditional dependence/independence structures in Figure 2 may be
useful in developing the network, for example, when the network represents a
hierarchical Bayesian model. There are other heuristics that can be used to
construct a BN. Neil et al. (2000) identifies five idioms or patterns that appear
frequently in BNs. Of these, three appear in the CMP-4 system representation.
The first is the definitional/synthesis idiom. This idiom captures the idea of
“saying what something is”: the child node is defined by its parents. For exam-
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Table 1: Mission Success RED

Event State
Ignition RED
Boosted Flight RED
Payload Deploy RED
Event 3 RED

Table 2: Mission Success YELLOW

Event State
Boosted Flight YELLOW
Data Collection 1 RED
Data Collection 4 RED
Data Collection 5 RED
Data Collection 7 RED
Data Collection 8 RED
Data Collection 8 YELLOW
Data Collection 9 RED
Experiment 1 RED
Event 1 RED
Event 2 RED
Event 4 RED
Event 5 RED
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Figure 2: Structures in a Bayesian Network
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ple, in Figure 3a, velocity = distance/time. Since velocity is not random given
distance and time, it technically does not have to be represented in the BN, but
including it can clarify the model.

The second useful idiom is cause/consequence. This idiom captures the idea
of “causal reasoning based on production or transformation”: the parent nodes
are the inputs to a process, and the child node is the output. For example,
in Figure 3b, wire breaking or battery failing causes the power to fail. The
cause/consequence idiom is ordered chronologically, with the parent nodes (in-
puts) occurring before the child node (outputs).

The third useful idiom is induction. This idiom captures the idea of “statis-
tical and analogical reasoning using historical cases to say something about an
unknown cause.” This idiom is the basic model for Bayesian inference. In Fig-
ure 3c, a historical attribute (perhaps a population parameter) and a measure
of similarity to the historical data are used to make a forecast.

In addition to the Neil et al. (2000) idioms, another probability structure
that can be captured by a BN is a fault tree (Bobbio et al. 2001). The fault tree
translation to a BN is like definitional/synthesis idiom, with two basic events
that contribute to an intermediate event represented as two parents and a child.
Figure 4 shows the correspondence between a fault tree AND gate and a BN
AND node. Notice that a fault tree implies specific conditional probabilities.

3 System Model

The joint distribution of V , the set of nodes in a BN, is given by
∏

v∈V

P(v|parents[v]), (1)

where the parents of a node are the set of nodes with an edge pointing to the
node. For example, in the serial structure in Figure 2a, the parent of node C is
node B, and node A has no parents.

Equation 1 shows that the joint distribution of the nodes in the BN is deter-
mined by a set of conditional distributions. For example, in Figure 1, one of the
probabilities that needs to be assessed to determine the joint distribution of all
of the events is P(Data Collect 1 = RED|Ignition = GREEN). Notice that the
conditional dependence/independence structure of the BN greatly decreases the
total number of probabilities that have to be specified. If the random variables
are discrete and there is no conditional structure, then every possible combina-
tion of values of the random variables must be assessed.

Consider again Figure 1 and Tables 1 and 2. These summarize the events
that make up the mission and the states of these events that define mission suc-
cess. To make a quantitative assessment of the probability of mission success,
all of the conditional probabilities in Figure 1 need to be assessed. For CMP-4,
these probabilities could not be elicited directly, nor were test data collected
that addressed the probabilities directly. Consequently, once mission success
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was defined, the definition process began again for each of its component prob-
abilities. This is where the events-functions-parts approach to modeling the
system is relevant.

Consider, for example, the event boosted flight. Boosted flight can be de-
composed into the BN given in Figure 5. In particular, boosted flight is made up
of a series of functions. Functions correspond to the idea of network fragments,
which are small groups of related variables that help structure the BN (Neil et
al. 2000; Laskey and Mahoney 2000).

Again, these functions are not at the right granularity, as there is no data
or information about the conditional probabilities. Figure 6 is the BN for roll
control, which is a further decomposition of part of Figure 5. The boxed nodes
are parts/physical components of the system; the circled nodes are functions
or events. The conditional probabilities for the parts can be estimated from
existing data for those parts, many of which were used in past missions. The
conditional probabilities can also be elicited using standard expert judgment
elicitation techniques, which is what we did for newer parts. Because parts
make up functions, and functions comprise events, the conditional probabilities
for the corresponding functions and events can then be calculated. This process
was completed for the entire set of events in Figure 1 and resulted in a BN with
approximately 600 nodes.

If all of the random variables V are discrete and all of the conditional prob-
abilities in Equation 1 are specified by point values, then there are exact algo-
rithms to compute the joint distribution for V and marginal distributions for
any subset of variables (Spiegelhalter et al. 1996; Jensen 2001). However, for
CMP-4, the conditional probabilities could not be elicited as point values.

The analysis of the CMP-4 was conducted along with the design, construc-
tion, and testing of the system itself. Consequently, at various points during the
analysis, there was no “data” available, at least in terms of repeated observations
of particular parts, functions, or events. To begin the analysis, Figure 1 was
decomposed, following the example of Figures 5 and 6. Each conditional prob-
ability required to fully specify the joint distribution of the resulting Bayesian
network was elicited from subject matter experts. Most of the experts had very
local knowledge—they could provide information for a few nodes conditional on
their parents.

The experts were unable to provide precise conditional probabilities, how-
ever, and they did not have access to historical data that they could use to
formally estimate the probabilities. Consequently, values were elicited within
the ranges given in Table 3. The experts were asked to identify failure modes
for each part, and were then asked to estimate the chance of part failure. We
reviewed the various biases associated with estimating probabilities with the
respondents and asked them to remain aware of bias issues throughout the dis-
cussions; in addition, they were asked to justify their estimates with reference
to other experiments or tests. Many of the interviews were conducted in groups,
which also helped to alleviate bias.

As examples, some of the elicited information for Figure 6 had the following
form:
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• The flight computer code is RED with Φ = 2

• If the navigation sensor fails RED, commands are YELLOW with Φ = 3

• If the flight code is RED, then commands are RED

• If Power B is RED, the electronics control unit is RED

• If environmental protection is RED, the electronics control unit is RED
with Φ = 4.

4 Information Combination

Statistically, we have the following problem. We want to understand pS =
P(Mission Success). We have very little information about pS directly, and
through an intensive modeling process, we have been able to rewrite pS =
f(p1, . . . , pn), where the f() and the pi are defined by a Bayesian network struc-
ture. For all of the pi, we have elicited distributions. In addition, for some of
the pi (and functions of the pis) we have additional data. We would like to
calculate π(p1, . . . , pn|Data) or at least draw a random sample from it. We can
then use Monte Carlo to calculate pS = f(p1, . . . , pn) for each random draw
from π() and thus calculate the distribution of pS . Even if we cannot write
down f() explicitly, there are exact algorithms to compute it (Spiegelhalter et
al. 1996; Jensen 2001).

Specifically, in addition to the elicited probabilities, there was some histor-
ical data available for the entire mission: in seven previous flights, two were
RED, three were YELLOW, and two were GREEN. There was also some data
available on the lifetimes of electronic components under nominal conditions.
The engineers viewed their system tests and simulations as providing state in-
formation about certain events or functions. The individual parts within the tail
section subsystem performed well during testing, and therefore the engineering
assessment for the function Vehicle Stability was GREEN.

Calculating π(p1, . . . , pn|Data) is straightforward if the pi are independent
and the data relates to only one pi. If data is available about functions of
the pi, for example about historical mission success, then the method proposed
in Hamada et al. (2004) and Johnson et al. (2003) can be used: substitute
f(p1, . . . , pn) for pS in the likelihood.

As an example, the Bayesian network in Figure 6 was evaluated. For elicited
interval values, the left and right endpoints were used, with 0.001 as the left
endpoint for Φ = 1 and 0.999 as the right endpoint for Φ = 5. The marginal
probabilities for roll control using the left endpoints are

P(Roll Control = RED) = 0.038
P(Roll Control = YELLOW) = 0.039

P(Roll Control = GREEN) = 0.922.
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The marginal probabilities for roll control using the right endpoints are

P(Roll Control = RED) = 0.355
P(Roll Control = YELLOW) = 0.216

P(Roll Control = GREEN) = 0.429.

If testing showed that vehicle stability could be assumed to be GREEN, then
the “left” probabilities change to (0.013, 0.009, 0.977) and the “right” probabil-
ities change to (0.201, 0.129, 0.670).

Table 3 contains beta distributions that could be used to capture the elicited
intervals. These were chosen so that the endpoints of the intervals are approx-
imately the 5th and 95th quantiles of the beta distribution. These parameters
of the distributions can be calculated using the formulas in Mosleh and Apos-
tolakis (1982) or by grid search in R (The R Project for Statistical Computing
2004). Figure 7 shows the marginal posterior distributions for the probability
that roll control is RED using the uniform and beta distributions. Table 4 sum-
marizes the 95% credible intervals for mission success for the uniform and beta
distributions; the third and fourth entries are the credible intervals when vehi-
cle stability is assumed to be GREEN. The probabilities are shifted left slightly
when the beta distributions are used, but the qualitative conclusions remain
unchanged.

5 Conclusions

The final Bayesian network for CMP-4 contained approximately 600 nodes. Neil
et al. (2000) summarizes many of the issues that surround working with a model
of this size:

Large knowledge-based systems, including BNs, are subject to the
same forces as any other substantial engineering undertaking. The
customer might not know what they want; the knowledge engineer
may have difficulty understanding the domain; the tools and meth-
ods applied may be imperfect; dealing with multiple ever-changing
design abstraction is difficult, etc. In the end these issues, along
with people, economic and organizational factors, will impact on
the budget, schedule, and quality of the end product. (p. 265)

There are inherent challenges in working on a project like this. For the
people in charge of such a system, even articulating an overarching definition
for success can be difficult—getting a workable statistical model out of it, even
more so. The authors of this paper represent a collaboration between statisti-
cians and ethnographers with expertise in eliciting model structures and expert
judgment. They worked together to develop first a qualitative model of the
events, functions, and parts of the CMP-4 system, and second a graphical sta-
tistical model that added elicited and available data to provide quantitative
answers for CMP-4 managers.
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Table 3: Elicited Probability Ranges

Elicited Value (Φ) Range Distribution
0 0
1 (0, 0.01] Beta(2.5,550)
2 [0.01, 0.1] Beta(2.5,55)
3 [0.1, 0.25] Beta(10,50)
4 [0.25, 0.5] Beta(15,25)
5 [0.5, 1) Beta(5,1.25)
6 1
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P(Roll Control=RED)

Figure 7: Marginal Probabilities for Roll Control
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There are no end-to-end computer tools that help with system represen-
tation, statistical model formulation, and inference. However, at Los Alamos
National Laboratory (LANL), we are working on tools for system representation
(Gromit; see Koehler and Klamann 2004) and inference (YADAS; see Graves
2003). We hope that eventually these tools will be part of an end-to-end suite
of tools.

This problem and these methods are of particular interest to the Department
of Energy national laboratories. Since the U. S. ended its full-scale nuclear test
program in 1992, LANL has been developing statistical methodology to certify
the reliability and performance of the U. S. nuclear stockpile. The assessment
issues are quite similar to those faced by the CMCM program: no full-system
testing, and the need to develop complete system models and integrate all avail-
able information and data. We believe that these methods are applicable to a
variety of complex systems and that they can provide a traceable and defensible
estimate of system metrics, which can facilitate other planning and problem-
solving efforts.
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Table 4: Mission Success 95% Credible Intervals

Distribution Mission Success RED Mission Success YELLOW
Uniform (0.12, 0.25) (0.083, 0.18)
Beta (0.10, 0.24) (0.074, 0.18)
Uniform with VS = G (0.059, 0.13) (0.037, 0.091)
Beta with VS = G (0.048, 0.11, ) (0.031, 0.087)
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